Cardinal:
Ruby on Parrot

Allison Randal
The Parrot Project &
O'Reilly Media, Inc.

Ruby

Perl 5

Python

Perl 6

PHP

Objective-C

Python

Javascript Lua
Ruby
Scheme Tcl
| |
Perl 5 Perl 6

TeX macro

\

N

Dylan

PHP

Invent your language here.

Forth

1 Y

v V Y

Y » »

.

Parrot VM

Cardinal

On Wed, 2 Jan 2002, Phil Tomson wrote:

We've had a couple of different threads flowing here the last few days
about getting Ruby to work with Parrot. Dan Sugalski has suggested that
we (the Ruby community) need to create a Ruby parser in Ruby that
initially needs to emit Parrot bytecode and later we could pass on an AST.

So..... | want to propose a new project called Cardinal (the name is open
to discussion, | chose Cardinal because Parrots are birds, Rubys are red
and Cardinals are red birds - is the name already taken? | don't see
any Cardinal project on RAA). The goal of Cardinal is to create a Ruby
frontend for Parrot.

Parser Grammar Engine (PGE)

Parser Grammar Engine (PGE)

Parser Grammar Engine (PGE)

Parser Grammar Engine

» Recursive Descent
 Regular Expressions
» Operator Precedence Parser

Tree Grammar Engine

e Attribute Grammars

(Early February, 1967)

Peter [Wegner] asked me what | thought about formal
semantics, and | said | liked [Ned] Iron's idea of synthesizing
an overall meaning from submeanings. | also said that |
liked the way other people had combined Irons's approach
with a top-down or “recursive-descent” parser...

So Peter asked, “Why can't attributes be defined from
the top down as well as from the bottom up?”

A shocking idea! Of course | instinctively replied that it was
impossible to go both bottom-up and top-down. But after
some discussion | realized that his suggestion wasn't so
preposterous after all...

- D. E. Knuth, “The genesis of attribute grammars”

Tree Grammar Engine

e Attribute Grammars
* Minimalist Program

Tree Grammar Engine

e Attribute Grammars
* Minimalist Program
e Attract multiple languages

Tree Grammar Engine

e Attribute Grammars

* Minimalist Program

e Attract multiple languages
* Easy to use

There's an odd misconception in the computing world that
writing compilers is hard. This view is fueled by the fact
that we don't write compilers very often. People used to

think writing CGIl code was hard. Well, it is hard, if you do

it in C without any tools.

Compiler Tools

e 4 stages

Compiler Tools

e 4 stages
* Parse Tree

Source

\

Parse

v

AST

\

OST

\

PIR

Compiler Tools

e 4 stages
* Parse Tree
 Abstract Syntax Tree

Source

\

Parse

\

AST

v

OST

\

PIR

Compiler Tools

o / Stages Source
Y
* Parse Tree Parse
 Abstract Syntax Tree Y
* Opcode Syntax Tree AfT
OST

v

PIR

Compiler Tools

o / Stages Source
Y

* Parse Tree Parse

 Abstract Syntax Tree Y

* Opcode Syntax Tree AfT

* PIR (or bytecode) OST

\

PIR

Value Transformation

42

Value Transformation

Parser grammar

42

rule “integer”

Value Transformation

Parser grammar
rule “integer”

42

Parse tree

E R

<integer>
value: 42

Value Transformation

Parser grammar
rule “integer”

42

Parse tree

AST tree
grammar rule

E R

<integer>
value: 42

Value Transformation

Parser grammar Parse tree AST tree
rule “integer” grammar rule
42 <integer>
value: 42
AST node
<PAST::Val>
value: 42

valtype: int

Value Transformation

Parser grammar Parse tree AST tree
rule “integer” grammar rule
42 <|nteger> |
value: 42
AST node OST tree

grammar rule

<PAST::Val>
value: 42 —>
valtype: int

Value Transformation

Parser grammar Parse tree AST tree
rule “integer” grammar rule
42 <|nteger> |
value: 42
AST node OST tree OST node

grammar rule

<PAST::Val> <POST::Val>
value: 42 —> value: 42
valtype: int valtype: int

Value Transformation

Parser grammar Parse tree AST tree
rule “integer” grammar rule
42 <integer> |
value: 42
AST node OST tree OST node PIR tree
grammar rule grammar rule
<PAST::Val> <POST::Val>
value: 42 > value: 42 >

valtype: int valtype: int

Value Transformation

Parser grammar Parse tree AST tree
rule “integer” grammar rule
<integer> |
e value: 42
AST node OST tree OST node PIR tree
grammar rule grammar rule
<PAST::Val> <POST::Val>
value: 42 > value: 42 — >
valtype: int valtype: int

42

Operator Transformation

Operator Transformation

Parser grammar
OPP rule

Operator Transformation

Parser grammar Parse tree
OPP rule

<expr>
6*9 H type: 'infix:*"

RN

<integer> <integer>
value: 6 value: 9

Operator Transformation

Parse tree

<expr>
type: 'infix:*'

RN

<integer> <integer>
value: 6 value: 9

Operator Transformation

Parse tree AST tree
grammar rule

<expr>
type: 'infix:*'

<integer> <integer>
value: 6 value: 9

Operator Transformation

L

<integer>
value: 6

N

<integer>
value: 9

Parse tree AST tree AST tree
grammar rule
<expr> <PAST::Op>
type: 'infix:*' op: 'infix:*'

.

<PAST::Val>
value: 6
valtype: int

N

<PAST::Val>
value: 9
valtype: int

Operator Transformation

AST tree

<PAST::Op>
op: 'infix:*'

RN

<PAST::Val> <PAST::Val>
value: 6 value: 9
valtype: int valtype: int

Operator Transformation

AST tree OST tree
grammar rule

<PAST::Op> -
Op: 'infiX:*' - > PASTOp

RN

<PAST::Val> <PAST::Val>
value: 6 value: 9
valtype: int valtype: int

Operator Transformation

AST tree

<PAST::Op>

OST tree
grammar rule

OST tree

<POST::Ops>

op: 'infix:*'

RN

<PAST::Val> <PAST::Val>
value: 6 value: 9
valtype: int valtype: int

Y

setup op: ‘mul’
<POST::Var> <POST::Var> <POST::Var>

varname: $P1

varname: $P2

varname: $P3

Operator Transformation

.Sub main :main
new $P1, .Undef
new $P2, .Undef
set $P2, 6
new $P3, .Undef
set $P3, 9
mul $P1, $P2, $P3
.end

Tree Grammar Engine

Simple steps
Elegant

Hide Complexity
Impossible

Questions?

* Further Reading

- http://parrotcode.org/docs/compiler tools.html

- Knuth, D. E. (1990) “The genesis of attribute
grammars.” Proceedings of the international
conference on Attribute grammars and their
applications, 1-12.

- Chomsky, Noam (1995). The Minimalist
Program. MIT Press.

http://parrotcode.org/docs/compiler_tools.html

