

Cardinal:
Ruby on Parrot

Allison Randal
The Parrot Project &
O'Reilly Media, Inc.

Parrot VM

PythonRuby

Perl 5 Perl 6 PHP

Parrot VM

Dylan

Forth

Tcl
Python

Scheme
Ruby

Perl 5

TeX macro

Perl 6 PHP

Objective-CLuaJavascript

Invent your language here.

Cardinal

On Wed, 2 Jan 2002, Phil Tomson wrote:

> We've had a couple of different threads flowing here the last few days
> about getting Ruby to work with Parrot. Dan Sugalski has suggested that
> we (the Ruby community) need to create a Ruby parser in Ruby that
> initially needs to emit Parrot bytecode and later we could pass on an AST.
>
> So..... I want to propose a new project called Cardinal (the name is open
> to discussion, I chose Cardinal because Parrots are birds, Rubys are red
> and Cardinals are red birds - is the name already taken? I don't see
> any Cardinal project on RAA). The goal of Cardinal is to create a Ruby
> frontend for Parrot.

Parrot VM

PASM (assembly language) PIR (intermediate representation)

Parser Grammar Engine (PGE)

Parrot VM

PASM (assembly language) PIR (intermediate representation)

Parser Grammar Engine (PGE)

?

Parrot VM

PASM (assembly language) PIR (intermediate representation)

Parser Grammar Engine (PGE)

Tree Grammar Engine (TGE)

Parser Grammar Engine

● Recursive Descent
● Regular Expressions
● Operator Precedence Parser

Tree Grammar Engine

● Attribute Grammars

(Early February, 1967)

Peter [Wegner] asked me what I thought about formal
semantics, and I said I liked [Ned] Iron's idea of synthesizing
an overall meaning from submeanings. I also said that I
liked the way other people had combined Irons's approach
with a top-down or “recursive-descent” parser...

So Peter asked, “Why can't attributes be defined from
the top down as well as from the bottom up?”

A shocking idea! Of course I instinctively replied that it was
impossible to go both bottom-up and top-down. But after
some discussion I realized that his suggestion wasn't so
preposterous after all...

- D. E. Knuth, “The genesis of attribute grammars”

Tree Grammar Engine

● Attribute Grammars
● Minimalist Program

Tree Grammar Engine

● Attribute Grammars
● Minimalist Program
● Attract multiple languages

Tree Grammar Engine

● Attribute Grammars
● Minimalist Program
● Attract multiple languages
● Easy to use

There's an odd misconception in the computing world that
writing compilers is hard. This view is fueled by the fact
that we don't write compilers very often. People used to
think writing CGI code was hard. Well, it is hard, if you do

it in C without any tools.

Compiler Tools

● 4 stages

Compiler Tools

● 4 stages
● Parse Tree

Source

AST

Parse

OST

PIR

Compiler Tools

● 4 stages
● Parse Tree
● Abstract Syntax Tree

Source

AST

Parse

OST

PIR

Compiler Tools

● 4 stages
● Parse Tree
● Abstract Syntax Tree
● Opcode Syntax Tree

Source

AST

Parse

OST

PIR

Compiler Tools

● 4 stages
● Parse Tree
● Abstract Syntax Tree
● Opcode Syntax Tree
● PIR (or bytecode)

Source

AST

Parse

OST

PIR

Value Transformation

42

Value Transformation

42 \d+

Parser grammar
rule “integer”

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

<POST::Val>
value: 42
valtype: int

OST node

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

<POST::Val>
value: 42
valtype: int

OST node

POST::Val

PIR tree
grammar rule

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

<POST::Val>
value: 42
valtype: int

OST node

POST::Val

42

PIR tree
grammar rule

Operator Transformation

6 * 9

Operator Transformation

6 * 9 infix:*

Parser grammar
OPP rule

Operator Transformation

6 * 9 infix:*

Parser grammar
OPP rule

<expr>
type: 'infix:*'

Parse tree

<integer>
value: 6

<integer>
value: 9

Operator Transformation

<expr>
type: 'infix:*'

Parse tree

<integer>
value: 6

<integer>
value: 9

Operator Transformation

<expr>
type: 'infix:*'

Parse tree

expr

AST tree
grammar rule

<integer>
value: 6

<integer>
value: 9

Operator Transformation

<expr>
type: 'infix:*'

Parse tree

expr

AST tree
grammar rule

<integer>
value: 6

<integer>
value: 9

AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

Operator Transformation
AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

Operator Transformation

PAST::Op

OST tree
grammar rule

AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

Operator Transformation

PAST::Op

OST tree
grammar rule

OST tree

<POST::Ops>

<POST::Var>
varname: $P2

<POST::Var>
varname: $P3

AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

<POST::Op>
op: 'mul'

variable
setup

<POST::Var>
varname: $P1

Operator Transformation

● .sub _main :main
● new $P1, .Undef
● new $P2, .Undef
● set $P2, 6
● new $P3, .Undef
● set $P3, 9
● mul $P1, $P2, $P3
● .end

Tree Grammar Engine

● Simple steps
● Elegant
● Hide Complexity
● Impossible

Questions?

● Further Reading
– http://parrotcode.org/docs/compiler_tools.html

– Knuth, D. E. (1990) “The genesis of attribute
grammars.” Proceedings of the international
conference on Attribute grammars and their
applications, 1–12.

– Chomsky, Noam (1995). The Minimalist
Program. MIT Press.

http://parrotcode.org/docs/compiler_tools.html

