

Parrot Compiler Tools

Allison Randal
The Perl Foundation &

O'Reilly Media, Inc.

There's an odd misconception in the computing world that
writing compilers is hard. This view is fueled by the fact
that we don't write compilers very often. People used to
think writing CGI code was hard. Well, it is hard, if you do

it in C without any tools.

Parrot VM

Perl 5Perl 6

Ruby Python PHP

Parrot VM

Dylan

Forth

Tcl
Perl 5

Scheme
Perl 6

Ruby

TeX macro

Python PHP

Objective-CLuaJavascript

Invent your language here.

Parrot VM

PASM (assembly language) PIR (intermediate representation)

Parser Grammar Engine (PGE)

Tree Grammar Engine (TGE)

Parser Grammar Engine

● Regular expressions
● Recursive descent
● Operator precedence parser

Parser Grammar Engine

● Parsing is recognizing patterns
● if # "if" keyword
● a == 4 # an expression
● then # "then" keyword
● print "Hello"; # a statement

● Grammar rules are patterns
● rule conditional {
● if <expression>
● then <statement>
● }

Parser Grammar Engine

● PGE is a pattern compiler
● grammar 'Simple';
● rule ident { [<alpha> | _] \w* }

● Run pgc.pir
● $ parrot pgc.pir simple.pg > simple.pir

● PIR output
● .sub 'ident'
● ... # 308 lines
● .end

Parser Grammar Engine

● Use the compiled parser
● .sub 'foo'
● ...
● load_bytecode 'simple.pir'
● # retrieve the rule sub
● parse = find_global 'Simple', 'ident'
●

● source = '_identifier' # the source
● match = parse(source) # parse
●

● '_dumper'(match) # dump the tree
● .end

Parser Grammar Engine

● Rule, token, regex
● Rule and token don't backtrack
● Rule does smart whitespace matching

● rule conditional {
● if <expression>
● then <statement>
● }
● token conditional {
● \s* if \s* <expression>
● \s* then \s* <statement> \s*
● }

Parser Grammar Engine

● Operator precedence parser
● proto infix:+ is precedence('=') { ... }
● proto infix:- is equiv('infix:+') { ... }
●

● proto infix:* is tighter('infix:+') { ... }
● proto infix:/ is equiv('infix:*') { ... }

● Associativity
● proto infix:= is assoc('right') is

looser('infix:||') { ... }

Tree Grammar Engine

● Attribute Grammars

(Early February, 1967)

Peter [Wegner] asked me what I thought about formal
semantics, and I said I liked [Ned] Iron's idea of synthesizing
an overall meaning from submeanings. I also said that I
liked the way other people had combined Irons's approach
with a top-down or “recursive-descent” parser...

So Peter asked, “Why can't attributes be defined from
the top down as well as from the bottom up?”

A shocking idea! Of course I instinctively replied that it was
impossible to go both bottom-up and top-down. But after
some discussion I realized that his suggestion wasn't so
preposterous after all...

- D. E. Knuth, “The genesis of attribute grammars”

Tree Grammar Engine

● Attribute Grammars
● Minimalist Program
● Transforming trees

Tree Grammar Engine

● TGE is a transform compiler
● grammar ASTGen is TGE::Grammar;
●

● transform astout (ident) :language('PIR') {
● .local pmc result
● result = new 'AST::Ident'
● $S2 = node
● result.'name'($S2)
● ...
● .return (result)
● }

Tree Grammar Engine

● Run tgc.pir
● $ parrot tgc.pir ASTGen.tg > ASTGen.pir

● PIR output
● .sub '_ident_astout' :method
● .param pmc tree
● .param pmc node
● ...
● .end

Tree Grammar Engine

● Use the compiled transformer
● .sub 'foo'
● load_bytecode 'ASTGen.pir'
● ...
● grammar = new 'ASTGen'
● astbuilder = grammar.apply(matchtree)
● ast = astbuilder.get('astout')
●

● ast.dump()
● .end

Compiler Tools

● 4 stages
● Parse Tree
● Abstract Syntax Tree
● Opcode Syntax Tree
● PIR (or bytecode)

Source

AST

Parse

OST

PIR

Value Transformation

42

Value Transformation

42 \d+

Parser grammar
rule “integer”

token integer { \d+ }

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

transform buildast (integer) {...}

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

transform buildost (PAST::Val) {...}

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

<POST::Val>
value: 42
valtype: int

OST node

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

<POST::Val>
value: 42
valtype: int

OST node

POST::Val

PIR tree
grammar rule

transform buildpir (POST::Val) {...}

Value Transformation

42 \d+

Parser grammar
rule “integer”

<integer>
value: 42

Parse tree

integer

AST tree
grammar rule

<PAST::Val>
value: 42
valtype: int

AST node

PAST::Val

OST tree
grammar rule

<POST::Val>
value: 42
valtype: int

OST node

POST::Val

42

PIR tree
grammar rule

Operator Transformation

6 * 9

Operator Transformation

6 * 9 infix:*

Parser grammar
OPP rule

proto 'infix:*' is tighter('infix:+') {...}

Operator Transformation

6 * 9 infix:*

Parser grammar
OPP rule

<expr>
type: 'infix:*'

Parse tree

<integer>
value: 6

<integer>
value: 9

Operator Transformation

<expr>
type: 'infix:*'

Parse tree

<integer>
value: 6

<integer>
value: 9

Operator Transformation

<expr>
type: 'infix:*'

Parse tree

expr

AST tree
grammar rule

<integer>
value: 6

<integer>
value: 9

transform buildast (expr) {...}

Operator Transformation

<expr>
type: 'infix:*'

Parse tree

expr

AST tree
grammar rule

<integer>
value: 6

<integer>
value: 9

AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

Operator Transformation
AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

Operator Transformation

PAST::Op

OST tree
grammar rule

AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

transform buildost (PAST::Op) {...}

Operator Transformation

PAST::Op

OST tree
grammar rule

OST tree

<POST::Ops>

<POST::Var>
varname: $P2

<POST::Var>
varname: $P3

AST tree

<PAST::Op>
op: 'infix:*'

<PAST::Val>
value: 6

valtype: int

<PAST::Val>
value: 9

valtype: int

<POST::Op>
op: 'mul'

variable
setup

<POST::Var>
varname: $P1

Operator Transformation

● .sub _main :main
● new $P1, .Undef
● new $P2, .Undef
● set $P2, 6
● new $P3, .Undef
● set $P3, 9
● mul $P1, $P2, $P3
● .end

Summary

● Attract multiple languages
● Easy to use
● Simple steps
● Hide Complexity
● Impossible

Questions?

● Further Reading
– http://parrotcode.org/docs/compiler_tools.html

– Knuth, D. E. (1990) “The genesis of attribute
grammars.” Proceedings of the international
conference on Attribute grammars and their
applications, 1–12.

– Chomsky, Noam (1995). The Minimalist
Program. MIT Press.

http://parrotcode.org/docs/compiler_tools.html

