
On Topic

Exploring "topic" and "topicalizers" in
Perl 6

Allison Randal
University of Portland

YAPC::NA 2002

© 2002 Allison Randal 1

On Topic

• "topic" and "topicalizer"

• This is not Vogon poetry.

• It's linguistics…

• …which might be worse.

• Be brave.

© 2002 Allison Randal 2

Topic in Linguistics

• Every discourse has a topic.

• Topic is "what we're talking about".

• The topic of this talk is "Topic".

© 2002 Allison Randal 3

Topic in Linguistics

• If you overheard:

"I saw Lister yesterday."
"Really? What's he up to these days?"
"Oh, you know, drunk again, and mooning over that awful

Krissy Kochanski. "
etc., ad nauseum...

• You would know the topic was "Lister".

© 2002 Allison Randal

• A topicalizer flags the current topic.

• Some topicalizers in English:

For our first trick tonight, ladies and gentlemen, my
partner Kryten will attempt to eat a boiled egg.

Given that God is infinite, and that the universe is also
infinite, would you like a toasted tea-cake?

Regarding topicalizers, I should point out that this
sentence starts with one.

4

Topicalizers in Linguistics

© 2002 Allison Randal 5

Topic in Perl

• Topic is the most important variable in a block
of code.

• Really, the underlying data structure is the
topic, not the variable.

© 2002 Allison Randal 6

Topic in Perl

• Variables are just names for storage
locations.

• Multiple variables may be aliased to the same
storage location.

"Rimmer", "he", "the hologram", "Smeghead"

$_, $name, %characters{'title'}

• If the topic has more than one alias, all are
the current topic.

© 2002 Allison Randal 7

Topic in Perl

• Why learn about topic?

• It's not required.

• The first law of topic: "Topic is $_".

© 2002 Allison Randal 8

Topic in Perl

• To use topic, use $_:

print;
chomp;
s///;
when condition { … }
.method_call;

• You don't have to understand topic, but you
might want to.

© 2002 Allison Randal 9

Topicalizers in Perl

• A topicalizer flags the current topic.

• A quick summary of topicalizers:

given bare closures

for =~
-> etc...

method
rule
CATCH

© 2002 Allison Randal 10

Coal and Switches

• The simplest topicalizer is given.

given $name {
when "Lister" {

print "Smeg!";
}
when "Cat" {

print "Orange?! With this suit?!";
}
when "Rimmer" {

print "4,691 irradiated haggis.";
}

}

© 2002 Allison Randal 11

Fruit Loops and M&M's

• The classic topicalizer is for.

for @orders {
when /scone/ {

print "Would you like some toast?"
}
when /croissant/ {

print "Hot, buttered, scrummy toast?"
}
when /toast/ {

print "Really? How about a muffin?"
}

}

© 2002 Allison Randal 12

To rw or not to rw...

• In this simple form both for and given
create $_ as rw.

for @names {
chomp;
s:w/Arnold J\.//;
s:w/Dave //;

}

© 2002 Allison Randal 13

Bow and Arrow

• The most flexible topicalizer is ->.

• By itself, it defines an anonymous sub:

$cleanup = -> $line is rw {
s:w/Captain Rimmer!/the bloke/;
$line _= " who cleans the soup machine!";
print;

}

$intro = "Fear not, I’m Captain Rimmer!";
$cleanup($intro);

© 2002 Allison Randal 14

To rw or not to rw... (cont.)

• -> creates its aliases read-only.

• Unless rw is specified.

$cleanup = -> $line is rw {
s:w/Captain Rimmer!/the bloke/;
$line _= " who cleans the soup machine!";
print;

}

© 2002 Allison Randal 15

Bow and Arrow

• Combined with another topicalizer, ->
creates a named alias for the current topic:

for @lines -> $line is rw {
s:w/Captain Rimmer!/the bloke/;
$line _= " who cleans the soup machine!";
print;

}
#Perl 5
for $line (@lines) {
$line =~ s/Captain Rimmer!/the bloke/;
$line .= " who cleans the soup machine!";
print $line;

}

© 2002 Allison Randal 16

Bow and Arrow

• Compare:

for @lines -> $line is rw {
s:w/Captain Rimmer!/the bloke/;
$line _= " who cleans the soup machine!";
print;

}

$cleanup = -> $line is rw {
s:w/Captain Rimmer!/the bloke/;
$line _= " who cleans the soup machine!";
print;

}

© 2002 Allison Randal 17

Bow and Arrow

• The arrow allows certain non-topicalizers to
act as topicalizers:

if %people{$name}{'details'}{'age'} -> $age {
print "$age already?\n";
if ($age > 3000000) {

print "How was stasis?\n";
} elsif ($age < 10) {
print "How 'bout a muffin?\n";

}
}

© 2002 Allison Randal 18

Bow and Arrow

• This will also work with while:

while get_next_pattern() -> $pat {
print grep /<$pat>/, @words;

}

© 2002 Allison Randal 19

Bow and Arrow

• This feature isn't useful with all truth tests:

if $counter > 3 -> $value {
do something with $value

}

if $counter > 3 {
my $value = 1;
do something with $value

}

© 2002 Allison Randal 20

Bow and Arrow

• In goofier moments -> is also called "pointy
sub".

• So, remember:

Oh pointy sub, oh pointy, pointy,
Anoint this variable, anointy, nointy.

– with apologies to Steve Martin

© 2002 Allison Randal 21

Method in My Madness

• Methods topicalize their invocant.

method sub_ether ($self: $message) {
.transmit(.encode($message));

}

method sub_ether {
.transmit(.encoded_message);

}

method sub_ether (: $message) {
.transmit(.encode($message));

}

© 2002 Allison Randal 22

The Sub of All Fears

• Subs are not topicalizers.

sub eddy ($space, $time) {
print;

}

• But using the is given property will provide
the same behavior.

sub eddy ($space is given, $time) {
print;

}

© 2002 Allison Randal 23

Perl Rules!

• Grammar rules topicalize their state object.

rule lifeform {
<gelf> | <human> | <mechanic> | <cat>

}

© 2002 Allison Randal 24

The CATCH-er in the Trye

• CATCH blocks always topicalize $!.

CATCH {
when Err::WrongUniverse {

try_new_universe();
}

}

© 2002 Allison Randal 25

The Bare Truth

• Bare closures topicalize their first argument.

%commands = (
add => { $^a + $^b },
incr => { $_ + 1 },

);

© 2002 Allison Randal 26

Get Smart... Match

• =~ topicalizes the variable it binds to the
match.

s/Kryten/Holly/;

$name =~ s/Kryten/Holly/;

© 2002 Allison Randal 27

Feeling a Bit Greppish?

• grep-like constructs with a block.

@names = map { chomp; split; } @input;

• grep-like constructs without a block.

@names = grep /<[A-Z]><alpha>+/, @input;

© 2002 Allison Randal 28

Nesting Instinct

• Nested topicalizers add some complication.

for @names {
when /Rimmer/ {

s/Arnold\s+//;
print;
print rimmer_quote();

}
when /Kryten/ {

for kryten_quotes() -> $quote {
print;

}
}

}

© 2002 Allison Randal 29

Nesting Instinct

• There is only one topic at a time.

• Topic obeys the lexical scope of topicalizers.

...
when /Kryten/ {

for kryten_quotes() -> $quote {
print;

}
}
...

© 2002 Allison Randal 29

Nesting Instinct

• There is only one topic at a time.

• Topic obeys the lexical scope of topicalizers.

• To keep an outer topic, use a named alias.
for @names -> $name {

when /Kryten/ {
for kryten_quotes() -> $quote {

print $name;
print;

}
}

}

© 2002 Allison Randal 30

Nesting Instinct

• Nested topicalizers within methods
obscure.methodname calls.

method locate ($self, *@characters) {
.cleanup_names(@characters);
for @characters -> $name {

.display_location($name);
}
.change_location('Holly');

}

© 2002 Allison Randal 31

Multiple Aliases

• Topicalizers aren't limited to a single alias.

for @characters -> $role1, $role2, $role3 {
...

}

for @humans, @gelfs -> $role1, $role2 {
...

}

for @characters; @locations -> $name; $place {
...

}

© 2002 Allison Randal 32

Multiple Aliases

• But the topic is consistent in each case.

• There is only one topic.

• The topic is always the first parameter.

© 2002 Allison Randal 33

Multiple Aliases

• The is given (or is topic) property may
change which parameter becomes the topic.

for @characters -> $role1, $role2 is given {
...

}

© 2002 Allison Randal 34

The Two Minute Talk

• First Law of Topic: "Topic is $_".

• Second Law of Topic: There is only one topic.

• Third Law of Topic: When in doubt, make a
named alias.

© 2002 Allison Randal 35

The Two Minute Talk

• Isn't that easy?

