
Ghosting the Spectre
(what you don’t know can hurt you)

Allison Randal
Rivos / University of Cambridge



Transient Execution Vulnerabilities

● Root cause overview
● PhD work
● RISC-V working group



Root causes and mitigation options
Vulnerability Class Isolate Flush Disable

Spectre variants mistrain 
speculative predictors to 
leak privileged data or 
manipulate control flow.

Isolate predictors to limit the 
impact of cross-context 
attacks (provides no 
protection against same-
context attacks). Isolate 
caches to limit the impact of 
cross-context attacks. 
Partitioning, tagging, and 
buffering are some options 
for implementing isolation.

Flush predictor state to 
temporarily disrupt the effect 
of mistrained predictors. 
Invalidate L1 data cache 
(and other caches) to 
temporarily disrupt the effect 
of leaked data.

Disable predictions and 
training to temporarily fully 
protect against Spectre class 
vulnerabilities.

Meltdown variants take 
advantage of exceptions that 
are temporarily suspended 
during transient execution 
(speculative or out-of-order), 
to leak privileged data or 
overwrite privileged data.

Isolate shared 
microarchitectural state to 
limit the impact of cross-
context attacks. Avoid 
transient updates to shared 
microarchitectural state, 
such as L1 data cache and 
other caches.

Transient exceptions 
immediately clear transient 
microarchitectural state 
invalidated by the exception 
(don’t wait until the exception 
is raised on commit).

Temporarily prevent 
transient execution 
(speculative or out-of-order) 
of any instructions that 
depend on a load/read/write 
until permission checks are 
complete.



Naive mental model

fetch execute result



Slightly more realistic mental model

fetch execute result

predictor

predict train



Slightly more realistic mental model

fetch execute result

predictor

predict train

fetch execute result

trainpredict



Slightly more realistic mental model

fetch execute result

predictor

predict train

fetch execute result

trainpredict



Too much information



Zone of risk



Root causes and mitigation options
Vulnerability Class Isolate Flush Disable

Spectre variants mistrain 
speculative predictors to 
leak privileged data or 
manipulate control flow.

Isolate predictors to limit the 
impact of cross-context 
attacks (provides no 
protection against same-
context attacks). Isolate 
caches to limit the impact of 
cross-context attacks. 
Partitioning, tagging, and 
buffering are some options 
for implementing isolation.

Flush predictor state to 
temporarily disrupt the effect 
of mistrained predictors. 
Invalidate L1 data cache 
(and other caches) to 
temporarily disrupt the effect 
of leaked data.

Disable predictions and 
training to temporarily fully 
protect against Spectre class 
vulnerabilities.

Meltdown variants take 
advantage of exceptions that 
are temporarily suspended 
during transient execution 
(speculative or out-of-order), 
to leak privileged data or 
overwrite privileged data.

Isolate shared 
microarchitectural state to 
limit the impact of cross-
context attacks. Avoid 
transient updates to shared 
microarchitectural state, 
such as L1 data cache and 
other caches.

Transient exceptions 
immediately clear transient 
microarchitectural state 
invalidated by the exception 
(don’t wait until the exception 
is raised on commit).

Temporarily prevent 
transient execution 
(speculative or out-of-order) 
of any instructions that 
depend on a load/read/write 
until permission checks are 
complete.



Predictors used in attacks

● Branch Target Buffer (BTB), direct and indirect branches
● Branch History Buffer (BHB), used by BTB
● Pattern History Table (PHT), conditional branches
● Return Stack Buffer (RSB) / Return Address Stack (RAS), returns
● Memory Disambiguator, memory loads (and stores)



Example: Branch Target Buffer (BTB)

● Spectre-BTB1 (Spectre variant 2) mistrains direct or indirect branch predictions
– Target: redirect transient control flow to an arbitrary destination (Branch Target 

Injection)
– Attacks succeed cross/same-address-space, in-place & out-of-place

● SgxPectre2 exposes TEE secret data (provisioning keys, seal keys, attestation keys) 
from outside the TEE.

● Spectre-BTB-SA-IP3 bypasses mitigations that flush or partition the BTB
● Spectre-BHB4 bypasses mitigations that isolate the BTB, demonstrating that BTB 

attacks can succeed by mistraining only the BHB
1P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom (2018) “Spectre Attacks: 
Exploiting Speculative Execution,” arXiv:1801.01203.
2G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai (2019) “SgxPectre: Stealing Intel Secrets from SGX Enclaves Via Speculative Execution,” in 
2019 IEEE European Symposium on Security and Privacy, pp. 142–157.
3C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss (2019) “A Systematic Evaluation of 
Transient Execution Attacks and Defenses,” arXiv:1811.05441.
4E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida (2022) "Branch History Injection: On the Effectiveness of Hardware Mitigations Against 
Cross-Privilege Spectre-v2 Attacks", In USENIX Security.



In-place & out-of place

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss (2019) “A Systematic Evaluation of 
Transient Execution Attacks and Defenses,” arXiv:1811.05441.



PhD work1

● How did we get here?
● Is there any way I’ll ever trust multitenant computing again?
● Design space exploration
● “disable” mitigation techniques
● Prototype 3 variations on BOOMv3 RISC-V core
● Simulation on Amazon FPGA (with FireMarshal and FireSim)

1A. Randal (2021) Ghosting the Spectre: fine-grained control over speculative execution, University of Cambridge.
https://cam.lohutok.net/publication/2021-ghosting-the-spectre/ghosting_the_spectre.pdf

https://cam.lohutok.net/publication/2021-ghosting-the-spectre/ghosting_the_spectre.pdf


Multitenant Infrastructure

Host OS

OS OS

OS
OS

OS

OS OS

OS OS

Host OS

OS OS

OS
OS

OS

OS OS

OS OS



Multitenant Infrastructure

Host OS

OS OS

OS
OS

OS

OS OS

OS OS

Host OS

OS OS

OS
OS

OS

OS OS

OS OS



Secure Isolation

Host OS

OS OS

OS
OS

OS

OS OS

OS OS

Host OS

OS OS

OS
OS

OS

OS OS

OS OS



How did we get here?1

● Early co-design of hardware/software
● Increasing architectural stratification and

standardization in hardware and software
● Modular and recombinable:

– CPUs, memory, storage, etc
– Kernels, system utilities, operating

systems, applications, etc.
● Improved ease of development and maintenance
● Harder to reason about security properties across abstraction layers
● Few engineers work across the full stack from microarchitecture to applications

CAP2, (C) 2004, Daderot, CC BY-SA 3.0

1A. Randal (2020) “The Ideal Versus the Real: Revisiting the History of Virtual Machines and Containers,” ACM Computing Surveys, vol. 53, no. 1, 5:1–
5:31.
2R. M. Needham and R. D. H. Walker (1977) “The Cambridge CAP Computer and its protection system”, In Proceedings of the Sixth ACM Symposium 
on Operating Systems Principles, 1–10, ACM.



How did we get here?

● Assumption: speculative execution can safely create “transient” 
microarchitectural state, as long as it’s cleaned up on commit, not 
architecturally visible

● Reality: transient microarchitectural state can leak secret information, run 
arbitrary code gadgets 



How did we get here?

● Percival1 identified risk combining speculative execution, simultaneous 
multithreading, dynamic pipeline scheduling, multilevel memory caches, and 
hardware prefetching

● Spectre2 and Meltdown3 realize the full extent of the security impact, more 
sophisticated and severe than previously thought possible

● Many variants followed4, continue to discover new variants

1C. Percival (2005) “Cache Missing for Fun and Profit,” in Proceedings of BSDCan 2005, Ottowa, Canada, p. 13.
2P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom (2018) “Spectre Attacks: 
Exploiting Speculative Execution,” arXiv:1801.01203.
3M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg (2018) “Meltdown,” 
arXiv:1801.01207.
4C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss (2019) “A Systematic Evaluation of 
Transient Execution Attacks and Defenses,” arXiv:1811.05441.



Trust in Computing

● Cloud, multitenant infrastructures
● “Trusted Computing”: hardware enhancements and software improvements to 

improve computer security
– attestation, cryptographically signed software

● “Confidential Computing”: protects data in use 
– encrypted memory, secure enclave/trusted execution environment

● Rely on hardware isolation features, undermined by speculative execution



Trust in Computing

● Speculation has performance benefits
● Restricting speculation has security benefits

– Share less, improve security
– Share nothing, better security

● Can we combine speculation and no speculation?
● Can we give systems software developers the ability to choose?
● How would that work?



Gluon: heterogeneous multicore

● Pair a “big” speculative core with a “little” non-speculative core
● Analogous to ARM big.LITTLE architecture, for security (rather than 

performance)
● Comprehensive protection for workloads on non-spec core

– Cannot mistrain other workloads (restrict malicious)
– Cannot be mistrained by other workloads (protect confidential)

● Still need to mitigate the speculative core



Gluon: heterogeneous multicore

● Learned: performance determined by which core the workload runs on
● Learned: not viable for large-scale servers, because of inflexible resource 

allocation



Tachyon: non-speculative

● Baseline for performance comparison
● Eliminate speculation entirely
● Protects against all known variants, and unknown future variants
● Performance always non-speculative



Tachyon: non-speculative

● Learned: performance is better than expected, on par with other 
comprehensive mitigations



Tachyon: non-speculative

● Learned: Can improve performance by increasing microarchitectural 
parallelism (fetch width, ROB, reservation stations, and execution units)



Dyon: demi-speculative

● Combines speculative and non-speculative execution in a single core
● Prototyped as an ISA extension
● Alternative: enabled for specific security domain (e.g. TEE or VM)
● Protects against known and future variants 



Dyon: demi-speculative

● Learned: Performance determined by use of non-speculative regions
● Learned: combining speculative and non-speculative features in a single core 

is feasible



(food for thought)

Would you use it?



RISC-V working groups

● Microarchitecture Side Channels (Security) SIG
– Upcoming: Dominic Rizzo, OpenTitan transient execution mitigation choices, June 

27th

● Trusted Computing SIG & Trusted Execution Environments
● Reliability, Availability, Serviceability (RAS)
● Quality of Service (QoS)
● (also hiring)



Bonus Material1

1A. Randal (2022) Transient Execution - Implementer’s Security Guide (DRAFT), RISC-V International.
https://github.com/riscv-admin/uarch-side-channels/blob/main/docs/transient_implementer_guide.adoc

https://github.com/riscv-admin/uarch-side-channels/blob/main/docs/transient_implementer_guide.adoc


Tagged predictions

● Isolation by tagging, privilege mode and VM
● Protects against cross-domain (U-mode/S-mode/M-mode & VM) attacks
● No protection against same-domain attacks
● Performance is good, but high area cost (duplicate predictions)

BTB BHB PHT RSB MD

Tagged 
predictions

Tagged 
predictions

Tagged 
predictions

Tagged 
predictions

Tagged 
predictions



Flush/invalidate predictions

● Protection by flushing or invalidating, e.g. on privilege mode or address space 
change, or manually

● Protects against cross-domain attacks
● No protection against same-domain attacks
● Performance is poor, e.g. 90% increase in PHT mispredictions after flush1

BTB BHB PHT RSB MD

Flush 
predictions

Flush 
predictions

Flush 
predictions

Flush 
predictions

Flush 
predictions

1I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M. Al-Hashimi, and G. V. Merrett (2019) "BRB: Mitigating Branch Predictor Side-Channels," 
2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 466-477.



Buffer predictions

● Isolation by buffering, e.g. by privilege mode, address space, hart, VM, 
process, sandbox or manually

● Protects against cross-domain attacks
● No protection against same-domain attacks
● Performance depends on implementation, penalty higher for large predictors 

(like BTB or MD), lower for small predictors (PHT or RSB)

BTB BHB PHT RSB MD

Buffer on 
domain change

Buffer on 
domain change

Buffer on 
domain change

Buffer on 
domain change

Buffer on 
domain change



Untrusted predictions

● Option for TEE/VM
● Lightweight disabling technique, don’t need tagging or flushing
● Predictions made as usual, but execution of dependent instructions held by a 

“control dependency” tag until branch/return resolves
● Some similarity to short forward branch optimizations

BTB BHB PHT RSB MD

Normal 
predictions, 
hold execution

Normal (BTB 
makes 
predictions)

Normal 
predictions, 
hold execution

Normal 
predictions, 
hold execution

Normal 
predictions, 
hold execution



Performance baseline: no speculation

● For the sake of comparison
● Out-of-order, but not speculative
● Mitigation alternatives that perform worse than non-speculative are ruled out
● Other alternatives measured on performance gains over the baseline

BTB BHB PHT RSB MD

Removed Removed Removed Removed L0 speculation 
cache


	Slide 1
	Transient Execution Vulnerabilities
	Root causes and mitigation options
	Naive mental model
	Slightly more realistic mental model
	Slide 6
	Slide 7
	BOOMv3
	Zone of risk
	Root causes and mitigation options
	Predictors used in attacks
	Slide 12
	Slide 13
	PhD work
	Slide 15
	Slide 16
	Slide 17
	Gluon: heterogeneous multicore
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Tachyon: non-speculative
	Tachyon: non-speculative
	Tachyon: non-speculative
	Dyon: demi-speculative
	Dyon: demi-speculative
	Slide 30
	RISC-V working group
	Slide 32
	gem5 untrusted predictions
	Slide 34
	Slide 35
	Slide 36
	gem5 performance baseline

