
Side-Channel Attacks &
Transient Execution Vulnerabilities

Allison Randal
Rivos Inc.



Overview

● Physical side-channel attacks (background)
● Microarchitecture side-channel attacks
● RISC-V Microarchitecture Side-Channels groups
● Aims:

– General understanding of the classes of vulnerabilities, the hardware 
design features that make them possible, and options for 
countermeasures

– Explain terms and concepts along the way



Terminology: “Covert” vs “Side” Channels

● Covert-channel attacks: use a hardware resource not designed to transfer information 
as a communication channel, to bypass isolation mechanisms (first published in the 
mid-1970s)
– Communication is intentional
– Sender and receiver are both malicious (sometimes called “Trojan” and “Spy”)

● Side-channel attacks: attacker observes hardware resources used by victim to access 
or infer victim’s private data
– Communication is unintentional
– Sender is victim, receiver is malicious

● They use some of the same channels, but they aren’t the same thing



Physical side-channel attacks (background)

● First published in the mid-1990s
● Exploit indirect physical information to extract secrets, such as 

cryptographic keys
● Power Analysis

– Technique: measure power usage related to
encryption/decryption for different inputs/outputs,
infer secret information from variations in power
consumption

– Countermeasures: change logic to equalize
power consumption (hiding) or to add random
noise (masking)

Power traces as part of RSA decryption, from “Simple Power Analysis on 
Exponentiation Revisited” (2010) https://doi.org/10.1007/978-3-642-12510-
2_6



Physical side-channel attacks (background)

● Electromagnetic Analysis
– Technique: measure electromagnetic waves produced by current flow 

over device, infer secret information from variations in EM signals
– Countermeasures: EM shielding, add EM noise, or change logic to reduce 

electric/electromagnetic coupling



Physical side-channel attacks (background)

● Fault Analysis
– Physical fault-injection attack (integrity), used as a source of information 

for physical side-channel attacks (confidentiality)
– Technique: physically tamper with voltage levels, clock signal, etc. to 

trigger a fault in the device (e.g. disturb a few memory or register bits), 
infer secret information based on variations in the output of faulty 
operations

– Countermeasures: replication of critical operations, error-detection 
mechanisms, anti-tamper protection modules



Physical side-channel attacks (background)

● Timing Analysis
– Technique: measure execution time of operations for different inputs, infer 

secret information from variations in timing (usually combined with other 
physical side-channel attacks)

– Countermeasures: change logic to equalize execution time (“constant-
time”) or add random delays 

● More obscure physical side-channel analysis: sound, temperature, vibration 



Terminology: “Physical” vs “Microarchitectural” Channels

● Physical side-channel attacks:
– Exploit indirect physical information to extract secrets
– Require physical access or proximity to the device (harder) 

● Microarchitecture side-channel attacks:
– Exploit indirect microarchitectural information to extract secrets
– No physical access required, may be software-induced (easier)

● Information sources are different, analysis and objectives are similar

● Countermeasures for either have costs in performance, power, or die area



Microarchitecture side-channel attacks

● Microarchitecture resources used as channels: cache timing, TLB, page tables, 
DRAM, prefetchers, branch predictors, FPU timing, SMT port contention, CPU 
frequency, etc.

● A few representative examples, to walk you through the concepts:
– Cache-Timing Analysis
– RAMBleed
– Meltdown
– Spectre
– SpecHammer



Cache-timing side-channel attacks

● Active area of work since the mid-2000s

● Technique: 
– Attacker establishes a pre-defined cache state
– Allow the victim to perform an operation
– Infer information about the victim based on cache

state changes

● Variants:
– By attacker action: Prime+Probe, Evict+Time,

Flush+Reload, Flush+Flush, etc.
– By cache: L1 requires victim/attacker on the same core, but not LLC

● Countermeasures: partition caches (statically or dynamically), flush caches, randomize cache access time 
(eviction or add noise), detection (signature or anomaly)

Flush+Reload, from “FLUSH+RELOAD: a High Resolution, Low Noise, L3 Cache 
Side-Channel Attack” (2014) https://doi.org/10.5555/2671225.2671271



RAMBleed

● Published in 2020

● Technique:
– Use Rowhammer to flip bits in memory (software-induced fault attack)
– Infer secret information (one bit at a time) based on success of bit flip

● Countermeasures: memory encryption, flushing cryptographic keys from 
memory, probabilistic memory allocator



Terminology: “Out-of-Order” vs “Speculative” Execution

● Out-of-order execution is a microarchitecture optimization that parallelizes fetch, 
decode, execute, and write-back stages of the pipeline, allowing instructions to 
execute when their operands are available
– Executes the exact same instructions as in-order, just in a flexible order

● Speculative execution goes one step further, and makes predictions about 
control flow and memory access
– May execute instructions/operands that an in-order microarchitecture never 

would

● Both retire/commit instructions in-order, supposedly cleaning up after 
themselves, so optimizations should be architecturally invisible … but ...



Terminology: “Transient” Execution

● Transient execution describes the “limbo” for both
out-of-order and speculative execution:
– Before instructions retire/commit (and clean up)
– Before exceptions are raised
– Before it’s known whether predictions were accurate

● False assumption: out-of-order/speculative execution can safely execute transient 
instructions and create transient microarchitectural state, as long as it’s cleaned up 
on commit, not architecturally visible

● Reality: transient instructions and microarchitectural state can leak secret 
information and run arbitrary code gadgets 

Transient execution vulnerabilities – zone of risk, from 
“Ghosting the Spectre: fine-grained control over speculative 
execution” (2021)



Meltdown

● Discovered in 2017, published in 2018
● One of new class of transient execution vulnerabilities
● Affects both out-of-order and speculative microarchitectures
● Technique:

– Attempt to access an unauthorized value
– Transient exception is not raised immediately, delayed until retirement
– During the delay, if transient microarchitectural state (e.g. cache) has been 

created for unauthorized value, it can be leaked using existing side-channel 
attacks

– On retirement, exception is raised, and microarchitectural state (may be) cleaned 
up, but too late, the damage is done



Meltdown

● Variants:
– By exception: page fault, general protection fault, device-not-available, 

bound range exceeded
– By target: out-of-bounds access, kernel memory, read-only memory, 

privileged system registers, floating point/SIMD registers, memory-
protection keys, TEE or VM memory

● Countermeasures: many proposed, but best is to delay updating 
microarchitectural state until permission checks are complete



Spectre

● Discovered and published at the same time as Meltdown
● Also in the class of transient execution vulnerabilities
● Affects only speculative microarchitectures
● Technique:

– Mistrain a predictor
– Allow victim to run with bad predictions, creating

transient microarchitectural state
– Infer or access secret information from microarchitectural state, using 

existing side-channel attacks (like Flush+Reload or Prime+Probe)

Transient control steering, from “NDA: Preventing 
Speculative Execution Attacks at Their Source” (2019) 
https://doi.org/10.1145/3352460.3358306



Mistraining a predictor

fetch execute result



Mistraining a predictor

fetch execute result

predictor

predict train



Mistraining a predictor

fetch execute result

predictor

predict train

fetch execute result

trainpredict



Mistraining a predictor

fetch execute result

predictor

predict train

fetch execute result

trainpredict



Spectre

● Variants:
– By predictor: conditional branch, direct and indirect branch, memory load/store, 

return address, cache way
– By secondary attack vector: redirect transient control flow to arbitrary destination, 

trigger a transient unauthorized/invalid load or store, divert return control flow to code 
gadget, etc.

– By side channel: mostly cache, but also TLB, DRAM, vector instruction timing, SMT 
port contention, and Branch Target Buffer (BTB)

– By target: reading or writing out-of-bounds, reading stale cache values, steal secrets 
from protected TEEs, sandbox escape, breaking type and memory safety 
guarantees, reading entire user memory or entire kernel memory, even remotely over 
the network, etc. 



Spectre

● Countermeasures:
– Isolate or flush predictions, speculation-barrier instructions, speculative 

taint tracking, delayed execution
– Many proposed mitigations only address some variants and most have 

prohibitive performance penalties
– Promising new approach, SpecTerminator1, combines taint tracking, 

instruction masking, and delayed execution, only 2.6% performance 
penalty for cache/TLB/DRAM variants, 6% for all variants

1“SpecTerminator: Blocking Speculative Side Channels Based on Instruction Classes on RISC-V” (2022) 
https://doi.org/10.1145/3566053



SpecHammer

● Published in 2022
● Technique:

– Use Rowhammer to flip bits in the victim gadget of a Spectre-PHT attack
– Modifies victim code that wouldn’t work as a gadget (no attacker-controlled 

offset variable) to make it a viable as a Spectre-PHT gadget 

● Countermeasures: some existing mitigations for Spectre-PHT and 
Rowhammer apply, but SpecHammer defeats taint tracking mitigations

● Compare: SpecHammer uses fault-injection attack to amplify side-channel 
attack (confidentiality) vs GhostKnight uses speculation to amplify the 
Rowhammer fault-injection attack (integrity) across privilege boundaries



Security verification tools

● Side-channel vulnerabilities are complex, and non-functional behaviors are 
difficult to reason about

● Mistakes have been made, including mitigations (shipped in production 
hardware) that didn’t actually deliver the protection promised

● Don’t trust that your design is right, verify

● Tools are available to help
– Some commercial (easier to use)
– Some academic (generally proof-of-concept, but over time techniques are 

integrated into commercial tools)



RISC-V Microarchitecture Side-Channels (uSC) SIG

● Meetings: alternate Tuesdays (on hold for holiday season)
● Mailing list: https://lists.riscv.org/g/sig-uarch-side-channels/
● Notes, Slides, and Docs: https://github.com/riscv-admin/uarch-side-channels
● New task group Microarchitecture Side-Channel Resistant Instruction Spans 

(uSCR-IS) TG
– Builds on concepts from fence.t1 and dome2 approaches to 

microarchitecture side-channels

● Also interested in exploring verification tools

1“Microarchitectural Timing Channels and their Prevention on an Open-Source 64-bit RISC-V Core” (2021) 
https://doi.org/10.23919/DATE51398.2021.9474214
2“Under the dome: preventing hardware timing information leakage” (2021) https://doi.org/10.1007/978-3-030-97348-3_13



Further Reading

● “Opening Pandora's Box: A Systematic Study of New Ways Microarchitecture 
Can Leak Private Data” (2021) by Jose Rodrigo Sanchez Vicarte, Pradyumna 
Shome, Nandeeka Nayak, Caroline Trippel, Adam Morrison, David 
Kohlbrenner, Christopher W. Fletcher, 
https://doi.org/10.1109/ISCA52012.2021.00035

● “A Survey of Microarchitectural Side-channel Vulnerabilities, Attacks, and 
Defenses in Cryptography” (2021) by Xiaoxuan Lou, Tianwei Zhang, Jun 
Jiang, and Yinqian Zhang, https://doi.org/10.1145/3456629

● “Hardware Security: A Hands-On Learning Approach” (2019) by Swarup 
Bhunia and Mark Tehranipoor, https://doi.org/10.1016/C2016-0-03251-5


	Slide 1
	Slide2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Naive mental model
	Slightly more realistic mental model
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide25
	Slide 26

